Fritz Haber made food from the air. He invented a process
that takes nitrogen from the air and turns it into fertilizer. This
revolutionized agriculture and fed billions of people who otherwise might have
starved. He became a hero in his native Germany and won a Nobel Prize. Yet the
man who fed billions also had a hand in unspeakable atrocities. Fritz Haber
developed poison gas which was then used on both sides in World War One. His
work led to the development of the devastating use of gas during the Holocaust....................................
Haber himself was born to a Jewish family in 1868 in
Breslau, a city that was then part of Germany but is now located in Poland and
is known as Wroclaw. He grew up without his mother, who died weeks after giving
birth. Fritz’s father, Siegfried was devastated. He threw himself into his
business and became a prosperous dye merchant. Siegfried eventually remarried
and had three daughters. He doted on his girls but not on Fritz…who was a
reminder of the pain of losing his first wife. After Fritz graduated from an
elite school and celebrated with friends in a pub until the wee hours of the
morning, his dad was not happy when he overslept and skipped family breakfast.
Fritz’s father took his three girls to Fritz’s bedroom and said: “Look well!
This is how the life of a drunkard begins!”. That deeply hurt his son. Fritz
wanted out of his father’s house. And out of Breslau. He wanted to “break free
of the chains that wear me down…” as he wrote to a friend. He decided to go to
university to study chemistry; he had already been conducting homemade
experiments at his aunt’s house. He studied at several German universities and
earned a doctorate in organic chemistry in 1891. Haber also served a year in
the military and hoped to be commissioned as an officer in the reserves, but he
likely understood that he was rejected because of his Jewish heritage. He later
converted to Christianity, possibly to advance his career or to assimilate into
German society, where anti-Semitism was rising. Rejection became part of his life.
When he applied to join the lab of the esteemed physical chemist Wilhelm
Ostwald in Leipzig, his application was denied, while that of his friend and
fellow student, Richard Abegg, was accepted. No one appeared to recognize his
brilliance. He moved from job to job, working at factories in Eastern Europe
through his dad’s connections. Finally, in 1894, at the age of 26, he was hired
as an assistant at the Technical University of Karlsruhe, now the Karlsruhe
Institute of Technology, in the department of Chemical and Fuel Technology. The
university wasn't renowned at the time, but this worked in his favor, as his
supervisors gave him the freedom to pursue his own ideas. When someone asked
how he managed to master a range of specialties in chemistry so quickly, Haber
replied that he “studied every night until 2 am until I got it.” Sometimes,
he’d escape into sanatoriums to calm his nerves.
He worked so hard that his wife, chemist Clara Immerwahr
wrote: “Fritz is so scattered, if I didn’t bring him to his son every once in a
while, he wouldn’t even know that he was a father.” (page 63) Clara was also
the child of a prosperous merchant. She was also born to a Jewish family and
later converted to Christianity. Because she couldn’t obtain good schooling at
a young age due to her gender, she made up for it with private tutors. At
first, she was only allowed to attend university as a guest, as women were not
legally admissible at the time. When that policy changed, she became the first
woman in Germany to earn a Ph.D. in chemistry. Yet her career was overshadowed
by her husband’s; she couldn’t advance in academia as she was expected to
fulfill the role of the professor’s wife.
Fritz Haber was working at the university when a British
scientist issued a dire warning in 1898. Sir William Crookes warned that
“England and all civilized nations stand in deadly peril of not having enough
to eat.” He focused his concern on the “bread-eaters of the whole world”, the
“great Caucasian race”. He predicted that the world would face famine within
decades unless a new source of nitrogen for agricultural fertilizers could be
found. Nitrogen is a vital nutrient for plant growth. Scientists relied on
limited natural sources of nitrogen to fertilize soil, such as animal manure,
bird and bat droppings, or sodium nitrate from Chilean mines - but these
resources are limited. Nitrogen is abundant in the atmosphere; 78% of the air
is made up of nitrogen. However, in the way that humans can’t drink saltwater,
plants can’t use nitrogen directly from the air as a source of nutrition,
because of its strong triple bond that makes it difficult for plants to digest.
It must be converted into a more useful form. Haber discovered that hydrogen
breaks the strong triple bond of nitrogen and converts it to ammonia, or NH3,
which is easier for plants to absorb and use. Ammonia is the raw material for
common nitrogen-based fertilizers, providing plants with essential nutrients
for growth, increasing crop yields and food production. Haber actually
struggled at first to find the point at which hydrogen and nitrogen atoms
combined into ammonia. He almost gave up until a rival scientist insulted him.
Walter Nernst said: “It is unfortunate that so little ammonia is formed in this
state of equilibrium, compared with what Haber’s highly inaccurate numbers led
us to assume.” That really ticked Haber off; he became obsessed with obtaining
ammonia before Nernst did. Haber tried using extreme heat to encourage the
formation of ammonia, but that didn’t work. Even 1000 degrees Celsius only
produced a minuscule amount of ammonia: one-hundredth of one percent.
Haber found an ally in Germany’s largest chemical company
BASF which gave him a generous salary to pay for lab equipment and hire
assistants. In March 1909, he achieved a breakthrough Haber used a catalyst,
osmium, to accelerate the chemical reaction between nitrogen and hydrogen. They
combined to produce ammonia with a yield of around 6%. Haber had discovered a
process akin to turning lead into gold. It would make him fabulously rich; BASF
agreed to pay him 1.5 pfennig - the German cent - in royalties for each kilo of
ammonia produced - which added up to a significant sum as the large-scale
production of ammonia followed. A chemist and engineer at BASF, Carl Bosch, was
responsible for scaling up and commercializing the production of ammonia. The
process of synthesizing ammonia is known worldwide as the Haber-Bosch process.
Today, an estimated 150 million metric tons of nitrogen is extracted from the
air annually, transformed into ammonia, and distributed as nourishing
fertilizer for crops. There are long-term environmental concerns to consider.
Chemicals from these fertilizers can find their way into water systems, harming
water quality and the surrounding ecosystems. But without the Haber-Bosch
process, it’s likely that billions of people would not have been able to obtain
the food and nutrition they need to survive. About half of our planet’s seven
billion people are fed with crops grown using synthetic fertilizers. In 1911,
two years after his groundbreaking discovery, Haber became the founding
director of a prestigious new research institution, the Kaiser Wilhelm
Institute for Physical Chemistry and Electrochemistry. Haber was now a member
of the nation’s elite. And Germany was a nation that had great ambition. Haber
was determined to support his country in World War I, unlike Albert Einstein,
who was horrified that his fellow scientists used their skills to help
Germany's war effort. Einstein the pacifist put it this way: “Our entire
much-praised technological progress, and civilization generally, could be
compared to an axe in the hand of a pathological criminal.”
Haber's process for synthesizing ammonia also enabled the
creation of explosives. Synthesized ammonia can be converted into nitric acid,
which can be used to create nitrates, essential components in powerful
explosives. Because of Haber’s process, Germany could fight on, despite British
warships blocking nitrate supplies from South America. But explosives would not
be Haber’s greatest contribution to his country’s war effort. Haber suggested
to German military leaders that they use chlorine gas as a weapon. German High
Command was willing to try anything to break the stalemate on the Western
front. On April 22, 1915, German troops stationed in Ypres, Belgium, released
5,000 tanks containing chlorine gas which drifted across the battlefield to
Allied positions. A British officer described the horror of seeing French
colonial soldiers “...with gray faces and protruding eyeballs, clutching their
throats and choking as they ran, many of them dropping in their tracks and
lying on the sodden earth with limbs convulsed and features distorted in
death.” Soldiers panicked and abandoned their positions, creating a four-mile
gap in the frontline that the Germans failed to exploit. Several German
commanders had actually opposed using poison gas on the battlefield. They
thought it was a dishonorable and inhumane way to fight as traditionally,
soldiers faced each other directly in combat. Yet, Haber didn’t consider poison
gas any worse than bullets. He argued, “...innumerable human lives would be
saved if the war could be ended more quickly in this way.” Unfortunately, it
did not speed up the war. As gas was heavily dependent on the way the wind
blew, and the Allies later used the same weapon themselves.
Haber was promoted to the rank of captain in recognition of
his efforts in developing chemical warfare. It clearly went to his head. The
first president of Israel quoted him as saying: “I was one of the mightiest men
in Germany. I was more than a great army commander, more than a captain of
industry. I was the founder of industries…All doors were open to me”. On April
1, 1915, Haber returned to Berlin to celebrate his promotion that same night,
his wife shot herself with his army pistol in their garden. Their 12-year-old
son Hermann found his dying mother. There’s been much speculation about why
Clara ended her own life. Decades later, Cousin Paul Krassa, wrote: “She was in
despair over the horrible consequences of gas warfare, for which she’d seen the
preparations, along with the tests on animals.” Clara had been miserable for a
long time. She struggled with the gender roles expected of her, leaving her own
ambitions to fall by the wayside. She detailed her suffering in a letter to her
mentor Richard Abegg, who had introduced her to her husband. “What Fritz has
gained during these last eight years, I have lost, and what's left of me, fills
me with the deepest dissatisfaction.” Haber never publicly defended himself
against speculation that it was his work that caused his wife’s death.
We got a glimpse of his emotional state when he wrote to his
former mentor, chemist Carl Engler, six weeks later: “For a month I doubted
that I could keep going. But now the war, with its dreadful images and constant
demands on all my powers, has made me calmer…” A day after Clara took her own
life, Haber returned to the front lines. He then supervised the development of
an even more horrific weapon – mustard gas. Unlike chlorine gas, mustard gas
didn’t blow away with the wind and instead, stuck to clothes, causing painful blisters
and blinding soldiers who got it in their eyes. Haber called it a “fabulous
success.” By the end of the war, an estimated 90,000 soldiers had been killed
by poison gas, and more than a million suffered injuries. Despite Haber’s
efforts, Germany lost the war. The effectiveness of gas diminished as the
Allies started using the same weapon. It didn’t help that Germany made a major
strategic blunder when it began to attack both military and civilian ships
without distinguishing between the two, which brought the U.S. into the war and
tilted the balance of power. After Germany surrendered, Haber worried that he’d
be tried as a war criminal. He moved with his son, his second wife Charlotte,
and their young daughter to neutral Switzerland for a time and even grew a
beard as a disguise. However, instead of being prosecuted for war crimes, Haber
was honored with the Nobel Prize in Chemistry in 1919. The Nobel Prize
committee declared his synthesis of ammonia "the greatest benefit to
mankind”. But the award was controversial because of Haber’s development of
chemical weapons. Two French scientists who had been offered prizes turned them
down in protest.
Although he won the Nobel Prize, his legacy is forever
tarnished. Haber failed to realize that his nation would use his chemical
weapon against innocent civilians. The irony is that his own people, the Jewish
people, would become the primary victims. The Nazis used Zyklon B to
exterminate over a million people in concentration camps in World War Two.
Scientists at Haber’s Institute had developed an earlier version of Zyklon to
get rid of insect infestations in flour mills and granaries. Then they
introduced another version of the pesticide that was easier to handle and more
powerful without imagining it would ever be used on people. Haber’s own extended
family perished in Hitler’s gas chambers. Anti-Semitism grew after the First
World War as some Germans felt the Jewish people were responsible for the
country’s significant problems. Hitler’s Nazi party capitalized on the
widespread unemployment, poverty, and unrest to fuel its rise to power. Despite
his contributions to his beloved Germany, Haber realized he would soon become a
target of Nazi repression. His conversion to Christianity was irrelevant; it
was his ancestry that mattered. He was forced to fire some Jewish scientists at
his government-funded research institute and, a few days later, Haber resigned
his own position in protest. In his resignation letter to the Prussian minister
of culture, Haber emphasized his lifelong principle: "My tradition
requires that when choosing coworkers for a scientific post, I consider only
the professional and personal characteristics of the applicant, without regard
for their racial makeup." “My tradition requires that when choosing
coworkers for a scientific post, I consider only the professional and personal
characteristics of the applicant, without regard for their racial makeup. You
cannot expect a man in his sixty-fifth year to change the thinking that has
guided him for the past thirty-nine years of university life, and you will
understand that the pride with which he served his German homeland all his life
now dictates this request for retirement.” Planck appealed directly to Hitler,
trying to convince him that forcing valuable Jews to leave would hurt Germany.
Hitler apparently flew into a rage. Nazi policy left no room for exceptions,
not even for the man who had arguably contributed more to Germany’s might during
World War I than anyone else.
Einstein, who had been traveling when the Nazis came to
power and declared he wouldn’t return to Germany, put it this way in a letter
to Haber: “I can imagine your inner conflicts. It is somewhat like having to
abandon a theory on which you have worked your whole life. It’s not the same
for me as I never believed in it in the least.” Einstein put it more delicately in a
letter to Haber’s son after Haber’s death. “It was the tragedy of the German
Jew: the tragedy of unrequited love.” Haber
tried his entire life to be the perfect German. Despite his religious
conversion, despite one of the greatest scientific discoveries of all time,
despite his attempt to save his country, the only thing that mattered, in the
end, was that he was Jewish. He summed up his feelings in a letter to the prominent
German chemist Richard Willstätter: “I am bitter as never before, and the
feeling that this is unbearable increases by the day.”
As if it could not be any worse, Haber found himself in a
dire financial situation. Hyperinflation after World War One had diminished the
value of his royalties from his ammonia patents. He also had to financially
support his second wife after their divorce. The global financial crisis of
1929 ate away what was left of his finances. He desperately searched for a way
out of his precarious situation. A former foe actually came to his rescue.
British chemist William Pope worked on the development of gas warfare for the
British and offered Haber a temporary position at the University of Cambridge.
By then, Haber’s health had worsened. He eventually left England to seek
treatment at a sanatorium in Switzerland. He got as far as Basel when his heart
failed. On the night of January 29, 1934, Fritz Haber died. He was 65 years
old. Haber had requested to his son Hermann that this to be written on his
gravestone: “In war and peace, as long as it was granted him, a servant of his
homeland.” Hermann refused his father’s wishes. He also refused to attend his
father’s memorial service believed he couldn’t be honored in the country that
had rejected him. Scientist Max Planck courageously organized a service in
Berlin on the one-year anniversary of Haber’s death despite intimidation by the
Nazis, who ordered state employees to stay away. Many of the scientists' wives
bravely attended. The great industrialist Carl Bosch was also there. He owed
his career to Haber.
The Haber-Bosch process led to the stunning growth of
Bosch's company, BASF, which later merged with other chemical companies to form
the conglomerate I.G. Farben which the Americans seized after WWII. Although
Haber tried to distance himself from his Jewish heritage nearly his whole life,
in his final days, he seemed to have a change of heart. He struck up a
friendship with the Zionist Chaim Weizmann, who fought to establish the state of
Israel. Haber lamented to Weizmann: “I was one of the mightiest men in
Germany…At the end of my life I find myself a bankrupt. When I am gone and
forgotten your work will stand, a shining monument, in the long history of our
people.” Despite his significant contribution to the field of chemistry, there
is no statue of Fritz Haber in Germany or anywhere. The only place that bears
his name is the institute he once led. The Kaiser Wilhelm Institute was renamed
The Fritz Haber Institute of the Max Planck Society in 1953. One of the
institute’s directors said that the name is a reminder that science can be used
as a tool for good and also as a tool for evil. Despite the controversy
surrounding Fritz Haber, his contributions to science have left a lasting impact
on the world.
Thanks for reading.
0 Comments